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Abstract

An efficient method for preparing both 1 and 1 -C-glucosides having a 3-hydroxypropyl group at the
anomeric position via a radical cyclization reaction with an allylsilyl tether was developed. The stereoselectivity of
the radical cyclization can be controlled by the conformation of the pyranose ring, which is effectively manipulated
by the hyroxyl protecting groups. © 2000 Elsevier Science Ltd. All rights reserved.

In recent years, we have been working to develop novel efficdemtycinositol 1,4,5-trisphosphate
(IP3, 1) receptor ligands, which are highly useful for proving the mechanism gfiediated C&
signaling pathways (Fig. $).During the course of our synthetic study using thelucose structure
as a mimic ofmyoinositol in IP3,2 we designed th&€-glucoside trisphosphatésand 3 as potential
IP3 receptor ligands. In this communication, we describe an efficient stereoselective synthegis of
glucosided and -C-glucosides, which are useful intermediates for the synthesis of our target molecules
2 and3, via a radical cyclization reaction with an allylsilyl tether as the key step.

Because of the unique biological activities ©fglycosides, considerable effort has been devoted to
developing practical methods for their preparatiofihe use of radical reactions is one of the most
efficient methods for constructingglycosidic bonds, and a number of studies have been reported using
these reactiond* We planned to develop a novel procedure for introducing a C3 unit stereoselectively
at both the 1 - and 1 -positions ofb-glucose via the radical cyclization reaction with an allylsilyl group
as a temporary connecting tetRe&cheme 1 shows our synthetic plan. We chose the phesgleno-
D-glucopyranoside$ and7, which have an allylsilyl tether on the 2-hydroxyl group, as the substrates
for the radical reaction. We expected the stereoselectivity in the radical cyclization to change, depending
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Fig. 1.

on the conformation of the substrates. Since the approach of the terminal of the tether to the anomeric
position from the -face would not be favored because of significant 1,3-diaxial repulgion Scheme

1a), the radical derived from the @-benzyl-protected substraéein a boat-like conformatichshould

cyclize selectively via arquatorialattack B in Scheme 1a) to give the iproduct8. On the other

hand, the radical reaction of the 3,4@TBS-protected substrai& which would predominantly exist

in an unusualC,4 conformation due to the significant steric repulsion between the bulky TBS gfdups,
would give the -cyclization produc® for the following reason. The 1,Rans-cyclization would be
impossible sterically because of theial orientation of the Ztether, as shown in Scheme 1b. Oxidative
treatment3 of the radical reaction producsand9 would give the corresponding-glucosides having a
3-hydroxypropyl group at the anomerie and -positions, respectively.
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Scheme 1.

Phenyl 3,4,6-tri©-benzyl-1-seleno-D-glucose 10), which was prepared by a known methbdas
treated with commercially available allyldimethylsilyl chloride, DMAP, andNEin toluene at room
temperature to give the correspondingdzallylsilyl ether 6 quantitatively (Scheme 2). The 3@
TBS-protected substraiewas prepared from the known glyci?!° as shown in Scheme 3. The TBS
groups were introduced at the 3ré&nshydroxyl groups ofl2, and the resulting compountB was
successively treated with dimethyldioxirane and PhSejfl&t CH,Cl; to give 1 -phenylselenidd 4.

An allyldimethylsilyl tether was then introduced at the 2-hydroxyl group of the phenylselgditegive
7, the other substrate for the radical reaction.

The conformation of the substrafavas investigated byH NMR and compared to that of the -

benzyl-protected substrag€Fig. 2). While the relatively large coupling constants in the benzyl substrate
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6 suggest that it exits in the usul;-conformation (Fig. 2a), the rather small coupling constants in the
TBS-protected compounitlindicate that it prefers a flippelC4-conformation, as expected (Fig. 2b).
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The radical reactions @ and7 were performed by adding a mixture of £2nH and AIBN slowly to a
solution of the substrate in benzene (80°C), toluene (110°@¥otylbenzene (130°C), and the products
were isolated after Tamao oxidati®rThe results are summarized in Table 1. The reactiof (@005
M) was first carried out in benzene under reflux. The reaction gave selectively the desirgllicoside
4 as the major product along with the correspondin@-glucosidell, after Tamao oxidation (entry 1:

yield 73%,

: =1:2.9). When the reaction was performed at 110°C in toluene, both the yield and the

stereoselectivity were improved (entry 2: yield 80%, =1:4.1). However, at higher temperatures, the

yield decreased (entry 3). Thus the radical reaction and the subsequent Tamao oxidation selectively gave

the 1 -C-glucosided, as expected.
The reactions with the TBS-protected substiaiere next examined. Treatmentoiinder conditions

identical to those in entry 1 did not initiate the radical reactiband the substraté was completely

recovered. However, whéhwas reacted with an excess of #8nH under higher substrate concentration

conditions (0.05 M), the reaction gave the desire@-glucosides as the sole product in 75% yield, after
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Table 1
Synthesis of2-glucosides by radical reactions withQ-allylsilyl-tethered substratés

entry  substrate (concn, M)  solvent temp (°C) yield product (ratio)®
1 6 (0.005) benzene 80 73 4,11 (2.9:1)
2 6 (0.005) toluene 110 80 4,11 (4.1:1)
3 6 (0.005) t-BuPhH 130 62 4,11 (3.1:1)
4 7 (0.005) benzene 80 no reaction

5 7 (0.05) benzene 80 75 only §

6 7 (0.05) toluene 110 85 only §

To a heated solution of the substrate in benzene, toluene, or +-BuPhH, a mixture of Bu;SnH (entries 1-4, 1.3 equiv;
entries 5 and 6, 4.0 equiv) and AIBN (0.6 equiv) in the same solvent was added slowly (entries 1-4, over 4 h;
entries 5 and 6, over 1.6 h). ®Determined by HPLC.

Tamao oxidation (entry 5). Similar treatment®ét 110°C in toluene further improved the yield®fo
85% (entry 6).

As described, we have developed an efficient method for preparing betlarid 1 -C-glucosides
having a 3-hydroxypropyl group at the anomeric position via the radical cyclization with an allylsilyl
tether. We demonstrated that the stereoselectivity of the radical cyclization can be controlled by the
conformation of the pyranose ring, which was effectively manipulated by the choice of the hydroxyl
protecting groups. The conversion 4fand 5 into the potential IR ligands2 and 3 is now under
investigation.
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